Раздел 7 Методы измерения уровня жидких веществ

 

Измерения уровня различных материалов достаточно широко используются в технологических процессах, в энергетике, на транспорте, летной и РК технике. Путем измерения уровня можно получить информацию о массе нефтепродуктов или горючего в нефтерезервуарах, танкерах, баках самолетов и ракет и проч. Количественно уровень выражается в единицах длины. Устройства, предназначенные для измерения уровня веществ, называются уровнемерами (УМ).

Разнообразие контролируемых сред, условий применения уровнемеров не позволяет использовать какой-либо один или несколько физических принципов преобразования, поэтому, как правило, тип УМ и принцип его действия выбирают исходя из конкретных измеряемых продуктов, их состояния и условий применения. Иногда для обеспечения надлежащей точности и достоверности измерения, для контроля уровня одного и того же вещества могут применяться УМ, основанные на различных принципах преобразования. Это используется, например, в случае образования в контролируемой жидкости фракций, возникающих в процессе хранения, переработки и пр.

Так, образование пены в процессе нагревания, ферментации и прочих процессов затрудняет использование ультразвуковых и ёмкостных УМ, для радиационных же и поплавковых УМ присутствие пены не является критическим фактором. С другой стороны, радиационные УМ используются, в основном, как сигнализаторы уровня, а поплавковые УМ при измерении в обычном режиме (при отсутствии пены) имеют меньшую точность измерения по сравнению с ультразвуковыми и ёмкостными. Поэтому в данном случае для обеспечения требуемой точности измерения на объект целесообразно устанавливать УМ разного принципа действия, например, ультразвуковой и поплавковый.

Различные методы преобразования, применяемые при измерении уровня можно объединить в несколько блоков, каждый из которых основан на фундаментальных, физических законах.

1.          Гравитационные методы, при которых прямо или косвенно используется проявление силы тяжести контролируемой среды (законы Архимеда, сообщающихся сосудов, весовой метод и т. д.).

2.          Полевые методы, в которых используются различного рода физические поля для идентификации границы раздела «жидкость–воздух» и эффекты их поглощения и отражения в контролируемой среде.

3.          Лучевые методы, при которых используются лучи частиц или сфокусированный оптический луч источника света или лазера.

Первая группа методов – гравитационная – представлена пневматическим, гидростатическим, совмещённым, весовым методами.

Полевые методы – это наиболее многочисленная группа методов, к ней относятся:

-  ёмкостной;

-  индуктивный;

-  резистивный (омический);

-  резонансный;

-  СВЧ;

-  ультразвуковой.

В группу лучевых методов входят и радиоизотопный и оптический методы.

Все перечисленные методы различаются трудоёмкостью, аппаратурным и метрологическим обеспечением, поэтому и применимость их в различных отраслях нефтегазового комплекса различна. Выбор конкретного метода измерения зависит от контролируемой среды, быстродействия, требуемой точности, диапазона измерения, рабочей температуры, различных технологических факторов (времени контроля, возможных химических реакций и т. д.).

Визуальные УМ

Наиболее простыми по конструкции и принципу действия являются УМ, основанные на визуальном измерении высоты уровня жидкости. Конструктивно они представляют собой трубки или водомерные стёкла, монтируемые на резервуарах (рис. 7.1,а, б). Трубки и стёкла оцифровываются в метрических единицах. Для увеличения диапазона измерения с одновременным сохранением прочности резервуара устанавливается несколько водомерных стёкол, располагающихся на различных, перекрывающихся уровнях (рис. 7.1,б).


а                                                         б

Рисунок 7.1–Визуальные уровнемеры

 

Второй тип УМ, имеющий довольно широкое применение – гидростатические УМ принцип их действия основан на законе Паскаля, при этом информативной величиной является давление, создаваемое столбом жидкости в контролируемом объекте. Известно, что уровень и давление связаны простой зависимостью:

,

где Pдавление столба жидкости в резервуаре; rплотность контролируемой жидкости; g = 9,8 м/с2  ускорение силы тяжести.

Этот метод измерения – по давлению – может использоваться только для открытых сосудов, так как для закрытых необходимо учитывать действие воздушной подушки, образующейся между верхней частью сосуда и поверхностью контролируемой жидкости.

Более точными методами являются измерения не относительного, а дифференциального (разностного) давления, которое получается в результате вычитания давлений подаваемых на чувствительный элемент дифференциального манометра (дифманометра) из разных точек (рис. 7.2):

P1 = gr1(H0 + h) + grВ(H0 h);

P2 = gr2(H0 + H).

и при r1 = r2

P = P2 P1 = g[H(r rB) h(r rB)] = g(r rB)(H  h),

где rBплотность воздуха в закрытом резервуаре.


       

 

Рисунок 7.2–Схема уровнемера с дифференциальным манометром

 

Из приведенных формул видно, что разность давлений не зависит от h0 (уровня размещения дифманометра).

Кроме того, так как r  << rB, то они упрощается:

P = g r (H h).

Из приведённых зависимостей видно, что погрешности измерений рассмотренными УМ определяются в основном изменением плотности (r) жидкости, находящейся в подводящих (импульсных) к дифманометру линиях от температуры.

Поплавковые УМ. В них ЧЭ является поплавок, плавающий на поверхности жидкости. Перемещение его вместе с жидкостью преобразуется в электрический сигнал или в метрические единицы. Простейший УМ (рис. 7.3) содержит поплавок, подвешенный на гибком тросе или тягах. На другом конце троса закреплён указатель – стрелка, перемещающаяся по метрической шкале, откалиброванной в единицах уровня. В УМ с дистанционной передачей поплавок соединяется с преобразователем линейных погрешностей в электрический сигнал (индуктивный или трансформаторный преобразователи).

 


Рисунок 7.3–Схема  поплавкового уровнемера

 

Ультразвуковые УМ.

Ультразвуковой метод (УЗ-метод) измерения уровня получил широкое распространение в промышленности и в различных технологиях. Это объясняется тем, что УЗ-метод обеспечивает бесконтактное измерение уровня агрессивных и взрывоопасных сред при высоких температурах и давлениях, что очень важно для нефтегазового комплекса, который имеет дело в основном со взрывоопасными и легковоспламеняющимися веществами и газами.

На основе УЗ-метода строятся как УМ, так и сигнализаторы уровня. По принципу работы их можно разбить на три группы: УЗ «локации», «прохождения» и «демпфирования».

В УМ, работающих на принципе локации (отражение от границы двух сред) (рис. 7.4,а,б), информативной величиной служит время распространения УЗ импульса (t) от границы раздела и обратно.

Для  ;

,

где hx уровень; Vв, Vж скорость распространения УЗ-волн в воздухе и жидкости.

Так как Vж > Vв,  то t1 > t2.

При локации через газ, воздух необходима большая энергия от излучателя, чем при локации через жидкость из-за рассеяния, но в жидкости появляется зависимость времени прохождения от свойств самой жидкости.

Основываясь на принципе прохождения, изготавливаются сигнализаторы уровня (рис. 7.4,в). Информативной величиной в них является уровень акустических потерь в воздушном зазоре между излучателем и приёмником с одной стороны и контролируемой средой – с другой. Чем ни выше уровень контролируемой среды, тем меньше воздушный зазор, тем меньше рассеяние акустической энергии и больше сигнал на приёмнике. Изменяя расположение передатчика и приёмника, а также регулируя чувствительность приёмника, можно настроить канал на определённый уровень контролируемой жидкости.

Сигнализаторы уровня так же строятся на принципе демпфирования (рис. 3.4,г, д), при котором информативной величиной являются потери энергии УЗ-поля в промежутке между излучателем (пьезо-элементом) и жидкостью. Если потери большие, то колебания автоколебательной системы «пьезоэлемент–генератор» срываются, что сигнализирует о достижении жидкостью требуемого уровня.


а

 

в

 

б

 
 


                                   г                              д

Рисунок 7.4–Схемы измерения уровня акустическим методом

 

 

Hosted by uCoz